
Aksimentiev Group
Department of Physics and
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

Introduction to MD simulation of

DNA–protein systems

Chris Maffeo
Rogan Carr
Aleksei Aksimentiev

CONTENTS 2

Contents

1 Introduction 2

2 Setting up a simulation 5

3 Simulation 19

4 Analysis 21

1 Introduction

This is an advanced tutorial that will guide the reader through the processes
of setting-up, performing and analyzing a molecular dynamics simulation of a
DNA–protein containing system using (primarily) Tcl scripts. This can be a
valuable approach because scripts provide an exact record of the process. Once
written, a script can be copied and modified to avoid repeating work in similar
projects.

We have provided complete versions of the scripts in the complete direc-
tory so you can check your work. We recommend that these are only used for
reference after you’ve attempted to write the scripts yourself (even if you are
transcribing more-or-less directly from the PDF); you will learn the most by
making mistakes and taking the time to understand them!

The files associated with this tutorial can be downloaded at the following url:
http://bionano.cpanel.engr.illinois.edu/tutorials/introduction-md-simulation-dna-
protein-systems.

DNA systems

DNA is so famously known as the carrier of genetic information that the struc-
tural and dynamical aspects of the molecule are often neglected. However, most
cellular processes that involve DNA cannot be understood without taking into
account its physical properties and structure.

Single-stranded DNA (ssDNA) is a polymer composed of nucleotides. A
nucleotide consists of one of four hydrophobic, ring-shaped bases (A, T, C or
G) connected to a sugar ring, which is in turn bonded to a phosphate. The
phosphate of one nucleotide can be connected to the sugar ring of another.
When this process is repeated, ssDNA is formed.

If two strands have complementary sequences (A·T or C·G), they can anneal
to form a double-stranded DNA (dsDNA) duplex stabilized by base-stacking and
Watson-Crick hydrogen-bonding between the complementary bases. Canonical
DNA (B-DNA) in electrolyte forms a right-handed double-helix. Traversing the

http://bionano.cpanel.engr.illinois.edu/tutorials/introduction-md-simulation-dna-protein-systems
http://bionano.cpanel.engr.illinois.edu/tutorials/introduction-md-simulation-dna-protein-systems

1 INTRODUCTION 3

duplex by one basepair corresponds to a rotation of about 34◦. A DNA duplex—
the smallest self-assembled unit of DNA—is used by the cell for packaging and
protecting its genetic information. DNA-DNA and DNA-protein interactions
can give rise to self-assembled structures; the DNA double-helix wraps twice
around a histone to form the nucleosome, which in turn form aggregates that
eventually form chromatin—the fiber that makes up the chromosome [1].

During DNA replication, the cell’s machinery unravels these structures, fork-
ing dsDNA into a pair of single DNA strands at the last step. A protein called
DNA polymerase moves along each unwound ssDNA strand to synthesize a
complementary strand. After the DNA is unwound, but before the DNA poly-
merase arrives, single-stranded DNA binding protein (SSB) wraps up the ssDNA
to prevent the strands from annealing, protect the nucleobases from chemical
modifications and prevent the formation of hairpin structures in repetitive, self-
complementary regions of DNA [2, 5].

Molecular Dynamics simulation

Small molecules that drive cellular processes can be studied using a variety of
techniques. In experimental labs, optical traps can be used to apply and measure
forces acting on single molecules. In the Aksimentiev group, models of single
molecules can be manipulated in similar ways. We can apply and measure forces
with a computational technique called Molecular Dynamics (MD) simulation.

In MD simulations, molecules are treated as collections of point particles
which interact via a set of forces; Newton’s equation (F = ma) is integrated
to describe the temporal evolution of the system. MD simulations use a force
field, which is a set of equations and parameters that together determine how any
pair of point particles interact. The most popular force fields for MD simulation
describe biomolecules as collections of atoms which are connected by harmonic
bonds (two-body interactions), angles (three-body interactions) and dihedrals
(four-body interactions) and interact through the Coulomb and van der Waals
potentials. Given the positions and velocities for all the atoms in a system,
NAMD (the MD package that we will be using) calculates new positions and
velocities using the force on each atom with the equation in Figure 1.

Today, you will prepare a system for a steered molecular dynamics (SMD)
simulation of ssDNA and SSB, running briefly to ensure that everything worked.
Unfortunately, there is insufficient time to perform a long-timescale simulation,
so a final trajectory of an equivalent simulation is provided. You will then
perform simple analysis of the trajectory using VMD’s Tcl interface.

You will probe the free energy landscape of DNA binding to SSB by pulling
on DNA to force its dissociation from SSB. To be computationally economical,
the DNA will be pulled along an unusual axis so that the DNA fit between

1 INTRODUCTION 4

Utotal =
∑

bonds i

kbond
i (ri − r0i)

2 +
∑

angle i

kangle
i (θi − θ0i)

2

+
∑

dihedrals i

kdihed
i

{
[1 + cos (niφi − γi)] ni "= 0
(φi − γi)

2
ni = 0

+
∑

i

∑
j>i

4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]

+
∑

i

∑
j>i

qiqj

4πεrij

Figure 1: The MD potential, where F = −∇U .

periodic images1 of SSB when fully stretched. This axis was chosen by trial
and error, rotating the extended DNA and adjusting the size of the unit cell
until a suitable pathway was obtained. There may be more thoughtful ways of
picking an axis, but this is a one-time task and we chose a quick guess-and-check
approach. It is generally better to use a simulation system that is large enough
to accommodate the DNA or to occasionally truncate the excess DNA.

1Most all-atom MD simulations employ periodic boundary conditions, which allows long-
range electrostatic interactions to be efficiently calculated in Fourier space. All other pair
interactions in the system are computed between nearest set if periodic images.

2 SETTING UP A SIMULATION 5

2 Setting up a simulation

Suppose your experimental collaborators have been pulling on DNA bound to
SSB, and are hoping that you can help them interpret their results. Normally,
a new project begins with extensive review of the literature about the system,
in this case SSB (PDB accession code: 1EYG). Briefly, SSB is a homotetramer
known to bind ssDNA in two modes that depend on ion concentration: SSB35

and SSB65 [4]. The subscript denotes the approximate number of nucleotides
occluded in each mode. SSB35 binds ssDNA cooperatively, and can form in-
definitely long protein clusters; SSB65 binds ssDNA with limited cooperativity.
Both binding modes are believed to have functional roles in the cell, but SSB65

is the preferred binding mode at physiological ion conditions in vitro. Your
collaborators have data on the force at various levels of extension, but can’t
see the geometry of SSB in the experiment, and no one knows if DNA binds to
SSB in the 35 or 65-nt mode under tension. Although they about a million of
times more slowly than can currently be done in MD simulation, it might be
informative to replicate their experiment in silico to see, e.g. whether the DNA
unravels from both ends at the same rate, or if unraveling proceeds processively
from one end.

When reviewing the literature, particular attention must be paid to any
crystallographic articles reporting structures that will provide the initial config-
uration of the system. It is good to carefully examine the structure to obtain as
complete an understanding of the protein as possible before simulating; many
trivial errors can be avoided early by doing so. For example, portions of a
biomolecule sometimes cannot be resolved from the electron density obtained
by x-ray scattering.

Load the PDB 1EYG into VMD. This x-ray structure contains two ∼ 30
nucleotide ssDNA fragments bound to SSB [4]. The structure depicts a homote-
tramer with folds that accommodate the DNA, which is held in place through
a mix of base-stacking and electrostatic interactions. Models of SSB35 and
SSB65, made by extending the DNA fragments in the crystal structure, are
shown in Fig. 2a and b.

Note that the x-ray structure does not contain hydrogen atoms. In gen-
eral, hydrogen atoms cannot be resolved in x-ray crystallography. For most
biomolecules, hydrogen atoms can easily be added to the heavier atoms. How-
ever, some amino acids can gain or lose a hydrogen atom with a likelihood that
depends on the pH and the local chemical environment so the placement of hy-
drogen atoms can be ambiguous. The propensity of a molecule to gain or lose a
hydrogen is usually expressed in terms of a pK value, which can be interpreted
as the pH where the molecule has an extra hydrogen half of the time. The most
ionizable amino acids are thus histidine (pK of ∼6) and cysteine (pK of ∼8.5).
However, under the right conditions, aspartic and glutamic acids can acquire

http://www.rcsb.org/pdb/explore/explore.do?structureId=1EYG

2 SETTING UP A SIMULATION 6

Figure 2: Models of ssDNA bound to SSB. (a) The ends of ssDNA bound
to SSB35 extend from opposite sides of SSB, allowing unlimited cooperativity.
(b) The ends of the ssDNA bound to SSB65 extend on the same side of SSB,
allowing only limited cooperativity. A method proposed to remove DNA from
SSB is illustrated with cartoon springs. The DNA is represented as light-blue
van der Waals spheres; the surface of SSB is shown in pink; K+ and Cl− are
shown as small brown and cyan spheres, respectively.

an extra hydrogen, and tyrosine, lysine and arginine can lose a hydrogen. The
terminal amino can also lose its charge (pK of ∼9). These ionizable residues
are often found around catalytic and ion-binding sites, which should be care-
fully examined to determine the appropriate protonation state. Otherwise, it
is usually sufficient to examine only histidine residues. Histidine usually carries
no net charge, but the hydrogen atom can be found on either of the nitrogen
atoms in its five-pointed ring. In some cases, a second hydrogen will bind to
positively charge the residue.

In VMD, the histidines can be highlighted using the selection text “resname
HIS” and the surrounding environment can be highlighted in a second repre-
sentation with “within 5 of resname HIS”. Using different size Licorice rep-
resentations may be helpful here. You can look for possible hydrogen bonds
with nearby oxygen atoms (red) to determine whether the hydrogen should be
placed on the ND1 or NE2 atom by renaming the residue from “HIS” to “HSD”
or “HSE”, respectively. For SSB, the qualitative placement of the proton is am-
biguous, so no action is required. A more rigorous approach would be to build
the protein structure file (PSF), which contains charge information, using HSD
and HSE, and then selecting the system with lower electrostatic energy (e.g. by
using VMD’s “measure energy” command). However, this more quantitative
approach may not work well if the residue is near the solvent.

Finally, cysteine residues in close proximity may form a disulfide bond, which

2 SETTING UP A SIMULATION 7

acts as a chemical crosslink that stabilizes many protein structures. These
residues can be examined with the selection “resname CYS”. You should find
that SSB has no cysteine residues.

If you render 1EYG structure with the Trace or New Cartoon representa-
tion, you may notice several missing residues in some of the loops of some of the
protein monomers. We have provided the PDB file ssb65.pdb, which has these
missing residues added through homology modeling and has the DNA from the
SSB65 model. Our strategy will be to pull one end of the DNA using the SMD
feature of NAMD. SMD acts by attaching a spring to a group of atoms and mov-
ing the other end of the spring at a constant user-defined rate. Unfortunately,
only once instance of SMD can be used per simulation, so the other end of the
DNA will be held fixed with NAMD “constraints” (these are actually per-atom
harmonic restraints). We can do a little better by using “moving constraints”
to move the restraints at the same rate and in the opposite direction as the
SMD spring so that no net momentum should be imparted to the system by the
applied forces. However, with 70 nucleotides fully stretched (about 7 Å per nt),
we would need a prohibitively large system to house the dissociated DNA. One
solution to this technical challenge is to stop the simulation occasionally and re-
move excess DNA. Though challenging to do, such a process can be automated
through shell scripts that invoke VMD and NAMD in a loop. For this tutorial,
you will instead pull the DNA along an unusual axis between periodic images
of SSB.

In VMD, source the file load-extended-dna.tcl, which loads ssb65.pdb,
rotates the coordinates so that the DNA ends lie along the SMD axis, sets
the size of the simulation cell, writes the PDB ssb-oriented.pdb, and finally
extends the ssDNA fully along the SMD axis for subsequent visualization. The
Periodic tab of the Graphical Representations window enables you to show
or hide periodic images of DNA. Observe how the DNA will fit between the
periodic images of the protein. Note that we assume the DNA will lie along
a line as it is removed from the protein. This will be more-or-less true at the
rapid rate the DNA will be pulled (150 Å/ns), but there may be unwanted
interactions between periodic images. The strategy employed in this tutorial is
not recommended for research projects!

In order to perform an MD simulation using NAMD, you must have at least
three files:

1. a PDB containing the coordinates and names of each atom;

2. a PSF containing information—mass, charge, and atom connectivity (bonds,
angles, dihedrals and impropers) and atom type for van der Waals parameters—
that will later be used by NAMD to determine what forces to apply to
each atom; and

2 SETTING UP A SIMULATION 8

Figure 3: Final system containing SSB35. The surface of water added with
the solvate plugin of VMD is shown transparently, and indicates the size of the
system as well as the size of the solvation shell from Grubmüller’s Solvate. Ions
are shown as light green and blue vdW spheres. The protein is shown using an
orange surface, and the DNA is shown with in cyan with atomic detail.

3. a NAMD configuration file that instructs NAMD what and how to run
the simulation.

The PDB ssb-oriented.pdb contains the protein and DNA structures in the
desired initial configuration and will provide the basis for building the PDB and
PSF. This can be done using the graphical AutoPSF plugin of VMD. However,
this guide uses the latest version of the CHARMM force-field (CHARMM36),
which uses a new patch to convert the default RNA into DNA (more on this
later) that breaks the current version of AutoPSF. Thus, this tutorial will guide
you through writing a simple Tcl script that is sourced from within VMD to
produce the structures. In general, such scripts are more flexible than the built-
in graphical interfaces, and also leave a precise record of how your system was
built, which can be invaluable. The build process resembles that depicted in
Fig. 4.

2 SETTING UP A SIMULATION 9

Figure 4: An overview of the system assembly process. A typical compart-
mentalized system assembly script is depicted. The script was written to evoke
explicitly named Tcl procedures that serve as logical wrappers. From top left,
clockwise: the system is shown in its initial state, containing protein and DNA
with no hydrogen atoms; structured water is added to the DNA and protein
using Grubmüller’s Solvate program (distinct from VMD’s Solvate plugin); the
DNA bound to the protein is cut into small pieces that are randomly distributed
through the system; VMD’s solvate plugin is used to add water that isn’t too
close to the protein; excess solvent is removed so that the system is a cube; the
protein and DNA charge is neutralized as counterions and coions are added to
the system at ∼ 1 M concentration using the autoionize plugin of VMD (which
also has a graphical interface).

http://www.mpibpc.mpg.de/home/grubmueller/downloads/solvate/index.html
http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/

2 SETTING UP A SIMULATION 10

Psfgen

VMD is unable to build a PSF without the help of the program “psfgen”.
Usually psfgen is accessed as a plugin from within VMD, and it unfortunately
has similar commands and data structures that can make building a PSF difficult
or confusing for the new student. It is essential to understand that psfgen has its
own internal memory space, which is completely independent from the internal
memory of VMD. Molecules are loaded into psfgen by reading data from files
with special psfgen commands, and these molecules “know” nothing about the
molecules loaded in VMD. Usually, a psfgen molecule is created one segment
at a time, where a segment refers to a contiguous set of bonded atoms. Thus,
the system building process involves loading your PDB into VMD, writing each
segment to a temporary PDB that psfgen reads. At the end of this, only water
and ions need to be added to the system to prepare it for simulation, and these
tasks are easily accomplished at the command line using VMD plugins.

A crash-course in Tcl. Before we proceed it is necessary to review Tcl, a
general purpose scripting language used by VMD. Below, Tcl commands are
highlighted in blue and placeholders are italicized. Unless you feel quite com-
fortable with Tcl, we encourage you to try typing each code example in the Tk
Console.

Tcl takes commands line-by-line and the usual format is:
command-name argument1 argument2...

For example, the command puts "hello world" will write “hello world” to
the Tk Console or to stdout. Lines with multiple commands can be written
with a semi-colon separating commands. Variables are assigned using:
set varname value and can be used in command arguments later by writing
$varname or ${varname} if special characters are present in varname.

Math can be performed with the expr command, as in expr "5+2". Expres-
sions involving integers will return integers and can cause unexpected behavior,
for example try typing expr "5/2" into the Tk Console. You can insert the
result of an expr command (or any other command) in another command’s ar-
guments by enclosing the expr command in brackets:
puts "result: [expr "5+2"]". This is called command substitution, and it is
very useful.

Double-quotes are used to create lists whose elements are delineated by
white-space (spaces, tabs, newlines). While set myList "a b c" works as
expected, the command set myList a b c fails because four arguments were
provided to the set command, which only expects two arguments. Curly braces
can also be used to make lists, set myList {a b c}. There is a vital difference
between quoted lists and braced lists: variable expansion and command will be
performed inside of quoted lists, but not braced lists. In addition, nested lists

2 SETTING UP A SIMULATION 11

are easy to write with braces but not quotes (the latter must be done using
variables or the list command). Experiment with both kinds of lists in the Tk
Console until you are comfortable with how these work. What do you think the
output of the following commands will be?
set var 1; puts "$var {2 [expr 2.0+$var]}".

Both kinds of lists can span multiple lines. In Tcl, blocks of code are techni-
cally multi-line lists (almost always written with braces). As with all high-level
languages, Tcl contains control statements like if, while, and for. For exam-
ple, you can create blocks of code that are conditionally executed as follows:
if { 1 == 1 } {

puts "this is a block of code that can span multiple lines"

}
The first argument to the if statement is a conditional expression and the sec-
ond argument is a block of code that will be evaluated when the conditional
expression evaluates to a value other than 0.

We have only covered some of the basics, but it should be enough to get
started writing the molecule building script. There are three online resources
that are particularly useful when writing Tcl scripts for VMD:

1. The Tcl Reference Manual (http://tmml.sourceforge.net/doc/tcl/), which
contains information about Tcl commands

2. The Tcl Text Interface section of the VMD user’s guide
(http://www.ks.uiuc.edu/Research/vmd/current/ug/node116.html), which
explains the extra Tcl commands understood by VMD

3. The psfgen User’s Guide (http://www.ks.uiuc.edu/Research/vmd/plugins/psfgen/ug.pdf),
which describes how the psfgen plugin of VMD can be used.

Scripting the system building process. Open your favorite text editor and
create a new file called psfgen.tcl. It is also a good idea to have a fresh VMD
session open while you work on your script so that you can test commands in
the Tk Console and also test the text used to create “atom selections” (more on
this later). At any point you can test your script by typing source psfgen.tcl

in the Tk Console. Afterwards, you may want to remove any molecules loaded
with the VMD command mol delete all and reset psfgen’s state with the
psfgen command resetpsf.

1. Prepare VMD and psfgen
The first step towards writing a PSF using a script is to tell VMD to use
the psfgen plugin with the command package require psfgen2. Now, all

2Ordinarily the Tk Console automatically loads the psfgen package, but your script
should contain this line in case you run the script from the command line with
vmd -dispdev text -e psfgen.tcl or vmd -dispdev text < psfgen.tcl

http://tmml.sourceforge.net/doc/tcl/
http://www.ks.uiuc.edu/Research/vmd/current/ug/node116.html
http://www.ks.uiuc.edu/Research/vmd/plugins/psfgen/ug.pdf

2 SETTING UP A SIMULATION 12

the psfgen commands are available to the script. The next step is to read in
the force-field topology files. These contain information about the atoms
in each protein residue or nucleotide, including how they are bonded,
what charge they have, and what “types” of atoms they are (this last
bit of information is used by NAMD in conjunction with the force-field’s
parameter file to determine what forces to apply). The topology files can
be read with the psfgen command topology path/to/file.rtf . Your
topology files are located in the directory charmm36.nbfix. Make your
script load all the files with the .rtf extension. Finally, make your script
load the PDB into VMD with the command mol new ssb-oriented.pdb

Now VMD and psfgen are ready to build your DNA and protein. Again,
this is done piece-by-piece using contiguous “segments” of bonded atoms.
For example, SSB is a homotetramer comprised of four (identical) monomers,
and each monomer will have its own segment. In preparation for adding
the segment to psfgen (again, psfgen has its own memory of the molecule
that you are building that is completely separate from the molecules loaded
into VMD), your script should write a PDB for the first segment.

2. Load DNA into psfgen
This can be done in a few lines by first creating an “atom selection” with
set sel [atomselect top "nucleic"]. Here, the atom selection text,
“nucleic” works just like it would in the Graphical Representations
window and selects all the DNA atoms. The atomselect command re-
turns a unique label that can be used as a Tcl command to query or
manipulate the selected atoms. When a Tcl command is contained in
square brackets, the command is executed and the bracketed-command is
substituted with whatever it returns, in this case the unique atomselect
label (something like atomselect0 or atomselect1). The code above saved
that label in the variable sel (this variable could be called anything) for
later use. Usually a PDB from the Protein Data Bank does not have
its up-to-four-letter segment defined, but this is crucial for psfgen. The
command $sel set segid DNA sets the segment name to “DNA” for the
atoms in the selection. Finally $sel writepdb tmp.pdb writes the PDB
file containing the atoms in the selection. Add the three lines described
above to your script.

2 SETTING UP A SIMULATION 13

Once again, adding or deleting molecules from VMD does not affect psf-
gen. Similarly, psfgen commands do not alter VMD’s state. Thus each
monomer must be added to psfgen’s picture of the structure using the
command:
segment unique-segname {

code-to-specify-residues-in-segment

}
The code argument to segment usually contains one psfgen command,
pdb tmp.pdb, that tells psfgen to extract the bonded information for the
segment from a PDB. A segment is almost always a set of covalently
bonded atoms3, such as a DNA molecule or protein monomer. Note
that the segment command does not load coordinates into psfgen. Co-
ordinates must be read into psfgen after the segment command using
coordpdb tmp.pdb. At this point, psfgen should have your first segment
molecule in its memory!

3. Load protein into psfgen, one segment at a time
You can repeat the above steps for each protein segment using VMD before
adding it to psfgen for the four monomers using suitable atom-selection
text instead of "nucleic". Most PDB files organize protein monomers
into “chains” that are represented through a single letter. In the SSB
structure, the chains for the four monomers are “A B C D”. Try typing
chain A into the Graphical Representations window to view just one
monomer. In general, if you are building a system with multiple segments,
you will need to find these chains. You will see how to find the chains in
the PDB momentarily, but first we’ll just assume that you know the chains
so you can finish your script.

You could adapt the code used to write the DNA segment to your pro-
tein by copying it once for each monomer, but there is a cleaner way that
leverages the power of a programming language. You can use a loop to
improve your script as follows, placing your segment and coordpdb com-
mands inside the loop:
set chains {A B C D}
foreach chain $chains {

set seg ${chain}PRO
puts "Adding segment $seg to psfgen"

...

}
The foreach command iterates through the elements in the list in $chains.

3there are some exceptions: multiple water molecules or ions are, for example, normally
represented in a segment

2 SETTING UP A SIMULATION 14

In each iteration, the variable chain is set to the next list element before
executing the code contained between the braces. The code between the
braces should be very similar to the code used to add the DNA to psfgen,
but the atomselection should be "protein and chain $chain".

If you want to generalize your script so that it works for most proteins, you
can obtain the list of chains for your foreach loop programatically. First,
create an atomselection, $sel, containing at least one atom per chain that
you would like to build. The command set chains [$sel get chain]

will return the chain corresponding to every atom in the selection. The
command lsort -unique $chains will return only the unique items in
the original (likely very long) list of chains. Use the above information
to make your script load the protein into psfgen, one chain at a time.
The techniques learned here can be useful in other ways; for example, you
could use the same approach to determine what amino acids are present
in a protein.

Chains and fragments. VMD automatically adds an integer to

each atom to identify each disjoint set of atoms as a unique frag-

ment, which you can use instead of the chain. This is useful because

the chain attribute will occasionally be missing from a PDB. How-

ever, be aware that residues missing from a PDB can fracture a

single chain into multiple fragments.

4. Apply patches in psfgen to make DNA instead of default RNA
At this point, if you wrote the PSF and PDB from psfgen’s memory us-
ing the writespsf file.psf and writespdb file.pdb commands, you
would end up with RNA, and not DNA (these differ chemically by only
an OH group). You can try this to see firsthand the difference between
RNA and DNA.

Between the segment and coordpdb commands for the DNA4, you should
“patch” the RNA to turn it into DNA. This is easy, but requires a loop
over each nucleotide. First, create a selection corresponding to the DNA
and use it to create a list of resids with
set resids [lsort -unique [$sel get resid]]. Then loop over those
resids with foreach r $resids { ... } Inside that loop, apply the patch
to the nucleotide “DEOX”5 with patch DEOX DNA:$r.

In addition to the bonds, the PSF specifies which atoms should have angles
and dihedral angles applied. Unfortunately, patch statements do not usu-

4This might work after the coordpdb just fine, but we haven’t tested it; in general it’s best
to apply patches before reading coordinates into psfgen.

5This patch is defined in the topology file for nucleic acids and changes the RNA structure
currently in psfgen’s memory into DNA.

2 SETTING UP A SIMULATION 15

ally specify changes to the angles and dihedrals, so you need to provide the
psfgen command regenerate angles dihedrals to automatically rein-
sert the angles and dihedrals in the PSF.

5. Write psfgen’s PSF and PDB
At this point, the PSF is almost complete. However, the tmp.pdb files did
not include all the atoms in the structures (namely hydrogen atoms were
missing). Before you write the structure, you should tell psfgen to use
the “internal coordinates” specified in the topology file to place the miss-
ing atoms in reasonable positions by issuing the command: guesscoord6.
Psfgen flags the “occupancy” field of the atoms whose coordinates were
guessed, which can be used to visualize these atoms by typing occupancy > 0

in the Graphical Representations window. In some rare cases a side-
chain might not be resolved and a bond can “pierce” an aromatic ring.
This kind of steric clash will not usually be resolved through minimization
and should be watched for.

Finally, you are ready to write the PSF and PDB from psfgen’s memory
using the commands writepsf psfgen.psf and writepdb psfgen.pdb.
Keep in mind that these are distinct from the VMD command (e.g. $sel writepdb file.pdb)
used to write pdb files from atomselections in VMD’s memory. Go ahead
and source your script from within VMD with source psfgen.tcl from
the Tk Console. Look at the resulting structures for anything unusual;
you have just completed the trickiest part of building a structure, and
things can easily go wrong. For example, if you forgot to load some atom
coordinates into psfgen, they will be located at the origin, and unusually
long bonds in your resulting structure are an indication that something
may have gone wrong.

6. Add solvent
The next step is to add water to the system.

6Psfgen will print many warnings that there are ”poorly guessed coordinates” when the
topology file doesn’t explicitly specify the bond-lengths and angles expected for an atom.
However, psfgen almost always guesses atomic coordinates adequately for a simulation and
you can generally ignore these warnings.

2 SETTING UP A SIMULATION 16

Careful placement of water. The structure of water can be

influenced 10 Å from a surface, and in this way can act as an ex-

tension of the protein. Moreover, the structure of the water around

a protein can stabilize its conformation. We often use a pair of

programs called Dowser and Grubmüller’s Solvate (accessed from

the command line with dowserx and solvate) to place individual

water molecules in energetically favorable locations near the protein.

Dowser places water molecules in cavities within a protein. These

molecules often cannot be resolved in x-ray structures but can be es-

sential for the structural stability of a protein. Grubmüller’s Solvate

places water molecules in energetically favorable locations around a

protein, resulting in a tighter solvent–solute interface. This optional

step may very slightly reduce the necessary equilibration time but

requires an extra, slightly complicated step during system assembly.

Note that Grubmüller’s Solvate is distinct from the solvate plugin

of VMD, which places pre-equilibrated water without considering

the interaction between the water and the protein. Both Dowser

and Solvate are executed prior to creation of the PSF. To make this

tutorial more portable, these steps have been omitted.

Unstructured solvent can be added using VMD’s graphical Solvate plugin,
but you can also add two lines to your psfgen.tcl script as follows:
package require solvate

solvate psfgen.psf psfgen.pdb -minmax "{-57.5 -57.5 -75} {57.5
57.5 75}" -o solvate

The numbers in minmax specify the extent to which the solvent should
reach, and have been chosen to allow the DNA to move between periodic
images of SSB. Usually, you should provide enough solvent so that there is
a minimum of 20–30 Å separation between the surfaces of periodic images
of the solute. This criterion is a rule-of-thumb based on the observation
that the structure of water is affected up to 10 Å from the surface of a
protein. Furthermore, electrostatic interactions are (approximately) ex-
ponentially screened on the characteristic Debye length, which is ∼10 Å
in 100 mM monovalent electrolyte, and ∼3 Å in 1 M.

Sometimes solvate adds a little too much water, and needs to be trimmed.
This isn’t the case for the box used in this tutorial, but you can consult
section 2.2 of the psfgen User’s Guide for detailed instructions should this
problem ever arise.

7. Add ions to system
DNA is highly charged (one negative electron charge per phosphate).
Counterions are expected to, more-or-less, neutralize the DNA within a
couple of Debye-lengths, so the system should be neutralized before addi-
tional ions are added to the appropriate concentration. This is very easily

http://www.ks.uiuc.edu/Research/vmd/plugins/psfgen/ug.pdf

2 SETTING UP A SIMULATION 17

achieved using the graphical Autoionize plugin of VMD, which also has
a convenient scripting interface. You can make your script neutralize the
system and then add ions to 1 M concentration with the following com-
mands (the -sc option specifies the desired molarity):
package require autoionize

autoionize -psf solvate.psf -pdb solvate.pdb -sc 1 -o ssb

2 SETTING UP A SIMULATION 18

Extra precision when adding ions. The autoionize plugin of VMD

adds ions in random position by substituting for water molecules

based on the number of water molecules present in the system.

However, the plugin doesn’t account for water molecules removed,

which can cause the ionic concentration to be a few percent larger

than desired at high ionic strengths (e.g. 1 M). Changes of a few per-

cent in the ion concentration are unlikely to have significant effect

in most biological systems, but for those desiring higher precision,

the following approach can be used. First the system should be neu-

tralized, using for example the -neutralize option of autoionize

instead of the -sc option. Alternatively, the program cionize may

be used, which places ions sequentially in optimal positions accord-

ing to Coulomb electrostatics. This may be especially important

when creating very large structures (millions of atoms) that can

only be simulated for a short time because it will take less time for

the ion atmosphere to relax with cionize. The usual expression

for the molality of an ionic species ci (concentration by weight) is

ci = NAni
mw

= ni
0.018nw

, where NA is Avogadro’s number, n is the

number of atoms and mw is the mass of water in kilograms, the

subscripts i and w refer to ions and water, respectivelya. nw is the

number of water molecules after ions have been added, which can be

related to the number n0 of water molecules before ions have been

added. n0 can be obtained with the command [atomselect top

"water and noh"] num. Assuming monovalent electrolyte such as

NaCl, nw = n0 − 2ni and thus ni = 0.018n0
1+2·0.018ci

ci. Rounding this

number to the nearest integer, ions can be added by using the au-

toionize option -nions "{SOD ni} {CLA ni}". For a list of ion

species known to autionize, type autoionize at the Tk Console

without arguments.

aNote that we are using molal concentration here with the factor of
18 coming from the atomic mass of a water molecule. If one were to
insist on using molar ion concentration, this factor might be too small;
the density of the TIP3P water model is a few percent lower than actual
water. Whereas for real water, molarity and molality should closely
coincide, for TIP3P, these measures of concentration differ slightly.
The autionize plugin uses a factor of 0.0187 so that ci is provided as
a molarity. Since the density of water depends slightly on simulation
parameters (e.g. PME), we feel the most accurate way to report ion
concentration is by specifying the molal concentration.

After adding the solvate and autoionize commands to your script, open
VMD and source your script with source psfgen.tcl to execute all the
commands. Load the resulting structure and make sure everything looks
okay. Check that the system is neutral with the following command:
measure sumweights [atomselect top all] weight charge. The com-
mand returns the total charge of the system in electron charges and

3 SIMULATION 19

it should return a value of magnitude significantly less than one. The
measure command provides a lot of useful functionality to VMD, espe-
cially for analysis of simulation trajectories.

8. Create PDB to specify constrained and SMD-forced atoms
The final step is to flag atoms in order to apply force using SMD and
movingConstraints. In the provided NAMD configuration file, atoms in
ssb.pdb that are flagged with a beta of 1 will have movingConstraints
applied and atoms flagged with an occupancy of 1 will have SMD applied.

In your favorite editor, open a file called constrainDNA.tcl. In this file,
you must first load your PSF and PDB (mol new ssb.psf and mol addfile ssb.pdb).
The next step is to set the occupancy and beta of each atom to 0 by creat-
ing the selection set all [atomselect top all] and $all set field 0,
where field is a placeholder for occupancy or beta.

Now make the script set the beta field of the C1′7 atom of the bottom-most
nucleotide to 1. Use VMD interactively to figure out the resid of that nu-
cleotide. Alternatively you can use the lindex and lsort -unique -integer

commands to make your script programatically find the first resid. Simi-
larly, set the occupancy field of the C1′ atom of the top-most nucleotide
to 1. Lastly, write over ssb.pdb with $all writepdb ssb.pdb. Now
source your script in VMD and verify that the proper atoms are flagged
in ssb.pdb

3 Simulation

Simulations can be performed in the NPT (constant number of atoms, pressure,
temperature), NVT (constant number of atoms, volume, temperature), or NVE
(constant number of atoms, volume, energy) thermodynamic ensembles. Water
is a nearly incompressible fluid, so small changes in the volume cause large
changes in the pressure. When building a system, it is almost impossible to
obtain a pressure close to atmospheric without simulating in the NPT ensemble.
External forces (which in general do not conserve momentum) may interact
badly with the barostat. Furthermore, since the external forces will do work
and add energy to the system, it is best to perform the production simulation in
the NVT ensemble. But how do you ensure that the pressure in this simulation
will be close to atmospheric pressure?

1. Perform NPT simulation to obtain the system volume
A good approach is to first run a short NPT simulation without external

7This atom is the carbon on the sugar that connects to the base. It is a good proxy for
the center of mass of a nucleotide.

3 SIMULATION 20

forces until the volume of the system stops changing, then use the volume
obtained in the NPT simulation to start an NVT simulation using the
correct system size. In this case, the terminal nucleotides must lie along
the steered-molecular dynamics (SMD) pulling axis at the onset of the
SMD simulation. Because the DNA ends may drift away from their initial
positions in the NPT simulation, it is best to start the NVT simulation
using the original coordinates rather than the NPT simulation’s restart
coordinates.

The solvent at the edges of the system may have clashes or small gaps that
could perturb the solute conformation. Thus it is best to perform initial
equilibration in the NVT ensemble with the solute conformation restrained
(constrained in NAMD terminology). Once, the system is equilibrated,
SMD simulation can begin.

The NPT simulation has already been performed on your behalf.

2. Extract the average volume from the NPT simulation
When starting an NVT simulation from an NPT simulation, it is common
practice to simply use the “extended system” restart file. This practice
isn’t ideal because the system volume fluctuates during the NPT simula-
tion; the volume of the production simulation would be randomly selected
from these fluctuations. For the present system, the fluctuations are about
0.1 Å along each axis, which is smaller than the size of an atom. How-
ever, changing the system volume by even this tiny amount can result in
significant changes of the pressure because water is nearly incompressible.

A somewhat better approach is to find the average the volume during the
NPT simulation, and scale your cellBasisVectors accordingly. From the
Tk Console, run the following command to extract the average system
volume: source averageVolume.tcl.

3. Perform NVT equilibration simulation
Enter the correct cellBasisVectors into ssb-nvt.namd and run this locally.
This simulation will equilibrate your system with “constraints” (really
restraints, but NAMD syntax is not always precisely descriptive) and SMD
forces defined (but a value of 0 for the SMD velocity so the ends are
merely held in place). Note that the cellBasisVectors are a little smaller
than the initial size of the system, and water around the edges will be
roughly twice the nominal density when you begin the NVT simulation.
Using the speed of sound in water (1500 m/s) to estimate the timescale
required for the uneven water density to propagate through the system,
you should simulate at least 6.6 ps per 100 Å. While this simulation runs,
have a careful look at ssb-nvt.namd and ssb-smd.namd to make sure you
understand the configuration files well. Don’t hesitate to ask questions

4 ANALYSIS 21

about the various options. You can also stop the simulation prematurely
and move on to the next section; a complete trajectory is provided for the
production simulation, so it is okay if the system is not fully equilibrated.

4. Perform production simulation with pulling forces
Once the simulation is finished, you should run ssb-smd.namd for a mo-
ment to ensure that everything worked. ssb-smd.namd is the same as
ssb-nvt.namd, except it uses an SMD velocity of 150 Å/ns and uses the
system volume from the restart.xsc file if the ssb-nvt simulation.

4 Analysis

1. Examine trajectory
Load and examine the SMD simulation trajectory in VMD (mol new

complete/ssb.psf8; mol addfile complete/output/ssb-smd.dcd in the
Tk Console). Watch how the DNA dissociates from SSB.

In the limit of slow pulling, you can safely assume that the force due to
movingConstraints is the same as the force due to SMD. In the provided
simulation trajectory, the pulling velocity was extremely fast, and the
above assumption may not hold. The only reliable way to extract the force
due to movingConstraints is to use VMD to track the position of the C1′

atom. However, for simplicity we will assume the movingConstraints and
SMD forces have equal magnitudes.

The SMD force can be extracted from a NAMD log file using any number
of scripting languages or utilities. If you are comfortable with a particular
scripting language (e.g. awk, Perl, or Python), feel free to extract the
force from the log file using that language. Presently, you will be guided
through this task using Tcl.

2. Extract SMD force from NAMD log file
The line you are trying to copy from the log file looks like this:
SMD 0 -2.88316 26.5742 -33.5497 150.378 261.271 -3359.08.
This line has the format: “SMD timestep posX posY posZ forceX forceY
forceZ”. Create a new tcl script called, getForce.tcl. First, set a vari-
able to the axis direction as follows set axis [vecnorm "92 115 60"].
vecnorm is a handy VMD command that normalizes a vector. In this file,
use the Tcl command set ch [open complete/output/ssb-smd.log] to
open the file for reading. The open command returns a unique channel
ID, which you set to the ch variable. The command gets $ch line will

8The provided trajectory was built with an old version of the solvate plugin and has a
different number of atoms compared to your PSF

4 ANALYSIS 22

read a line from the file, setting it to the variable line and returning the
number of characters on the line, or −1 if it reached the end of the file.

To step through the file, you can use a while loop, which executes a condi-
tional statement and then executes the loop code as long as the conditional
statement was true (0 in Tcl). For example, while { [gets $ch line] >=
0 } { puts $line } would simply copy the contents of the file to the Tk
Console. Inside the loop, you must write code that checks if the line
begins with “SMD ” (note the extra space prevents the line beginning
“SMDTITLE” from being printed).

The easiest way to do this is with a very simple regular expression9. Use
an if statement and the command regexp "^SMD " $line to only print
lines that begin with “SMD ”. Check to see if it works in the Tk Console
by sourcing your script.

There are several ways to extract the relevant information, but the eas-
iest employs either the lrange list index1 index2 or lassign list

var1 var2 ...varN command. Use one of these techniques and the for-
mat of the SMD line (given above) to get the vector form of the force.
Don’t hesitate to read about these commands in the Tcl Reference Man-
ual. By taking the dot product10 between the force vector and the axis
of pulling, you can obtain the magnitude of the force. Test to see if this
works. Although NAMD usually describes force using kcal/mol Å, the
force printed in the SMD output is in units of piconewtons.

Now that you have a basic script, you can open a file for writing (rather
than reading as we have just done) using the command set outCh [open

outfile.dat w]. It doesn’t matter whether the file was pre-existing, but
opening a file like this will erase its contents. Subsequent commands like
puts $outCh "some text or data" will print “some text or data” into
outfile.dat.

Thus, you can print the magnitude of the force along the SMD axis inside
the loop to a data file of your choosing. Finally, after the close of the while
loop, you should close both of the open file channels with the close $ch

command. Now have a look at the resulting forces using your favorite
plotting software! Note that you will need to employ heavy smoothing to
see the signal emerge from the noise. The force that you obtain should be
quite large. This is because the pulling velocity was extremely rapid. At

9Regular expressions are implemented in many scripting languages and
provide a powerful method for querying and manipulating text. See
http://www.tcl.tk/man/tcl8.5/TclCmd/re syntax.htm for more information about reg-
ular expressions in Tcl.

10vecdot $v1 $v2 where $vN is a list of numbers like "1.0 0.0 0.0"

http://tmml.sourceforge.net/doc/tcl/
http://tmml.sourceforge.net/doc/tcl/
http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm

4 ANALYSIS 23

a slower rate of 1 Å/ns, the force is on the order of 100 pN, which is still
much larger than the forces obtained in experiment.

If you have time, you can modify your script to print the work performed
by the SMD spring. Recall that the work done by the spring is equal to
the applied force times the displacement. You can approximate the work
done between two SMD output statements by considering the average force
and the displacement. The displacement along the pulling direction can
be obtained by extracting the position of the SMD atom at each of the
two times, taking the difference with the vecsub command, and taking
the dot product between the force vector and the displacement vector with
the vecdot command. The total work is just the cumulative sum of the
resulting quantities.

Equilibrium information from non-equilibrium simulations. If

you were to perform this simulation many times, you would be able

to apply Jarzynski’s equality [3] to obtain an estimate of the free

energy change in removing the DNA from SSB from the work per-

formed during the non-equilibrium trajectories.

e−β∆F = e−βW

The bar denotes an ensemble average; β denotes 1/kBT; ∆F is the

change in free energy when the system is brought from one state to

another; W is the work done during the change of state. Jarzynski’s

equality is a relatively recent development in statistical mechanics

that has be experimentally validated. We find this development sig-

nificant because it relates work performed during a non-equilibrium

process (performed many times) to an equilibrium property of the

system. There are other ways of obtaining free energies from MD

simulations, including umbrella sampling, adaptive biasing force, and

metadynamics. but we highlight Jarzynski’s equality because it has

applications in both experiment and simulation.

3. Track the unraveling of DNA from SSB at either end
Create a new script. Load the PSF. You can load the DCD with
mol addfile file.dcd waitfor all. The option waitfor all makes
the mol command wait to return until the entire DCD is read; by default
mol will return after just the first frame of the DCD is read. Now, create
a skeleton of a loop over the frames of the trajectory. The most straightfor-
ward way is to find the number of frames using set nf [molinfo top get numframes].
Then create a for loop that runs an index from 0 to $nf:

REFERENCES 24

for {set f 0} {$f < $nf} {incr f} {...}.
Inside that loop, you will find and print the resids of the first and last
nucleotides bound to the SSB.

Before the loop, create an atomselection to select the nucleotides bound
to SSB: something like set bound [atomselect top "nucleic within

5 of protein"]. Of course, the nucleotides near the protein vary during
the simulation. The selection text is evaluated during the current VMD
frame when the atomselect line is read, which should be the last frame of
the DCD. If you change frames afterwards (from the GUI, using animate

goto frame , or using $bound frame frame), the selection will still point
to the original atoms selected. To re-evaluate the selection text, you must
change the frame for the selection $bound frame frame before executing
$bound update. Use the above information to update the $bound at each
frame inside the loop.

Now you must extract the first and last resids from $bound. This can
be done with a combination of $bound get resid, lindex list index

and lsort -integer list . Here, index is a 0-based integer (starts with
0). To select items from the end of the list, index can be end or end-n ,
where n is an integer.

Finally, add code to print this information, preferably to two different files
each with time in the first column and the resid in the second.

How does unwinding proceed? When you plot the data in all-three files,
do you see any correlations between DNA unbinding from either end and
the applied force? Recall that these simulations were performed with
a very fast pulling velocity (much faster than the usual, already-much-
faster-than-experiment pulling velocities typically employed in production
simulation).

References

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molec-
ular Biology of The Cell. Garland Science, New York & London, 4th edition,
2002.

[2] E. V. Bocharov, A. G. Sobol, K. V. Pavlov, D. M. Korzhnev, V. A. Jaravine,
A. T. Gudkov, and A. S. Arseniev. From structure and dynamics of protein
L7/L12 to molecular switching in ribosome. J. Biol. Chem., 279:17697–
17706, 2004.

[3] C. Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev.
Lett., 78:2690–2693, 1997.

REFERENCES 25

[4] S. Raghunathan, A. G. Kozlov, T. M. Lohman, and G. Waksman. Structure
of the DNA binding domain of E. coli SSB bound to ssDNA. Nat. Struct.
Mol. Biol., 7(8):648–652, 2000.

[5] W. A. Rosche, A. Jaworski, S. Kang, S. F. Kramer, J. E. Larson, D. P. Gei-
droc, R. D. Wells, and R. R. Sinden. Single-stranded DNA-binding protein
enhances the stability of CTG triplet repeats in Escherichia coli. J. Bacte-
riol., 178(16):5042–5044, 1996.

	Introduction
	Setting up a simulation
	Simulation
	Analysis

