Publications

Export 115857 results:
Filters: First Letter Of Last Name is A  [Clear All Filters]
2018    
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
Christopher R. Benson, Christopher Maffeo, Elisabeth M. Fatila, Yun Liu, Edward G. Sheetz, Aleksei Aksimentiev, Abhishek Singharoy, and Amar H. Flood. "Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem." Proceedings of the National Academy of Sciences (2018).
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)
James Wilson, and Aleksei Aksimentiev. "Water-compression gating of nanopore transport." Physical Review Letters 120:268101 (2018). PDF icon Supporting Information (7.41 MB)

Pages