2011
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev. "
Atoms-to-microns model for small solute transport through sticky nanochannels."
Lab Chip 11:3766-73 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Adarsh D. Radadia, Courtney J. Stavis, Rogan Carr, Hongjun Zeng, William P. King, John A. Carlisle, Aleksei Aksimentiev, Robert J. Hamers, and Rashid Bashir. "
Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces."
Adv Funct Mater 21:1040-1050 (2011).
Pages